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ABSTRACT 

To support SECEDE II data analysis and interpretation, EG&G 

(Bedford Division) is analyzing photographic data from the Spruce Event. 

Fourier analysis of digitized data frames will produce power spectra, 

autocorrelation functions, and other such data as is appropriate for event 

interpretation and correlation.   The concept of Fourier analysis is also 

being examined to establish the validity and usefulness of tin analysis 
results. 
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SECTION 1 

INTRODUCTION 

The Bedford Division of EG&G hap channeled its efforts on thö SECEDE 

program in two directions. First, it is attempting to characterize the Struc- 

tured environment (i. e.. striations) created in a late-time barium cloud. 
, i > 

Second, it is acquiring and correlating all such data from SECEDE I, II, and 

III, BIRDSEED, certain pre-SECEDE releases, and from other environments. ! 

This is a first semi-annual technical report describing some preliminary work 

in both of these areas. 

In the first area,  EG&G has been asked to proceed with a digital analysis 

of appropriate photography.    In particular,  selected frames of data from ! 

Technology International Corporation (TIC,) photography are being scanned on 

a Mann Trichromatic Microdensitometer, and the density and/or radiance 
I, 

profiles generated from the scanned data are being digitally analyzed using 

Fourier techniques to produce power spectra, auio-covariance,  and auto- 

correlation functions, and other such data as might prove useful,  i 

In parallel with the analysis of photographic data,  EG&G is also under- 

taking an examination of the applicability, validity, and limitations of such 

analysis.    Tt has become apparent that members of the SECEDE community 

not knowledgeable in the areas of photographic data analysis, digital analysis,, 

and Fourier techniques would find such a study of considerable interest.    In 

particular,  EG&G will attempt to examine the realistic and practical limits of 

such analysis work, and will attömpt to give the user a basic understanding of 

the meaning of, and validity of, power spectra,  FouHer transforms, and other ' 
such data. 

I i , i 
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In the second area, EG&G is reviewing all available SECEDE docu- 

mentatipn and will organize pertinent information in tabular and/or matrix 

formulations to facilitate correlation and interpretation of results.   It is 

currently anticipated that the results of this effort will be presented in EG&G's 

final report, when all available data has been acquired. 
I ! 

Section 2 herein presents the radiometric data which is being Fourier 

analyzed.   Pertinent frames of data from the Spruce Event of SECEDE II are 

identified for analysis and radiance profiles presented.   Section 3 begins the 

derailed examination of Fourier analysis as applied to microdensitometer 
data. 

j. 
, Appendix A contains notes prepared during the SECEDE Summer Study. 

Those notes detail some of the assumptions, tools, and relationships used by 

EG&G in obtaining radiometric information from photographic data.   It is 

reproduced here for the benefit of those members of the SECEDE community 

who did not receive it at thp Summer Study. 

i " 
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SECTION 2 

SPRUCE STRIA TIONS 

The EG&G striation analysis effort will be directed at Event Spruce. 

I In particular, four frames of data (Table 1) will be analyzed in the Fourier' 

domain for spatial frequency content. These frames were selected because 

I they best bracketed the sphere and beacon track times, and because the data 

generated could potentially be used to correlate with the sphere and beacon 
data. 

Table 1.   Event Spruce Striation Analysis. 

T.I.C.  Film No.  71723 

Frame Time (after release) 

^ 16 min,  5 sec 
164 17 min, 52 sec 

i 185 20 min, 28 sec 
193 23 min, 36 sec 

The referenced frames and generated radiance profiles (across the 

J striations) are shown in Figures 1-4.   One hopes, with Fourier analysis 

techniques applied to the digitized radiance profile, that the small scale 

J structure seen superimposed on the overall cloud background can be charac- 

terized in a power spectrum presentation.    These profiles are currently being 

f digitally processed;   the results of the analysis will be presented in the final 
report. - 

I 
I 
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Figure 1.     Event Spruce as seen at 16 min. 5 sec from Tyndall. 
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I Figure 2.   Event Spruce as seen at 17 min, 52 sec from Tyndall. 
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Figure 3.   Event Spruce as seen at 20 min, 28 sec from TyndaU. 
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Figure 4.   Event Spruce as seen at 23 min, 36 sec from Tyndall. 
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The Spruce ion cloud at approximately 20 minutes is shoyrn in 

I Figure 5 as Frame 187; from T. I. C. record 71721 (originally a color record, 

printed, here ih blaqk-and-white).   This record was exposed from lyndall; 

1 '   and assuming an ROA (range along the optical axis) of 300 km, a dimensional 

i scale was1 placed on the photograph to indicate relative cloud and striation    ' 
dimensions. , ' , ' 

«fc1 

«» 

i. 

i 

-- 

1 

I 
I 

i 

Of particular concern here is the striated i-egion indicated by thp 

arrow.   Are these,characteristic and/or repetitive striation dimensions and 

spacings, which caii be measured from photography Sjuch as this?  If not, what 

data;can be gleaned from records such as these, and what does this data 

indicate about the spatial'and temporal history of striations per se.   Section 3 

begins a Retailed examination of this question and presents the implications 
of the anöwers to, that question. 

i 

i 

i 

'H' 
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TR 187 

Figure 5.    Event Spruce as seen from T^ndall on T. I. C. 
record 71721 at 20 minutes. 
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SECTION 3 

SOME PRELIMINARY THOUGHTS ON DATA PROCESSING 
FOR STRIATIONS 

3.1        INTRODUCTION 

Shortly after the high-altitude release of barium, the ion cloud is 

observed to form striations - highly structured "tubes" roughly parallel to the 

geomagnetic field.   The striations are visual/photographic.   They map the 

local geomagnetic field, and their formation is the result of interactions 

between the geomagnetic field, the   afield, ionospheric winds, and the ion 
cloud. 

In order to interpret the available SECEDE data and to predict future 

data, it is necessary to describe the striations, at least statistically.   A 

major portion of the SECEDE effort is thus directed toward developing in- 

formation on the growth and formation of striations. 

One part of the overall striation analysis effort is directed toward 

the generation of spatial frequency-domain power spectra of striated ion-cloud 

radiance profiles.   It is generally believed that such information will assist 

in the assessment and interpretation of SECEDE data, although the detailed 

connection between the spatial frequency content of visible striations and 

the various signal degradations has not been established.   Perhaps the con- 

nection could be established if good spatial frequency descriptions were 
available. 

But what do we mean by "good"?  Ideally, we would mean descriptions 

permitting an exact prediction of any future event;   that is. deterministic 

relations or equations into which we would insert the various experimental 

10- 
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parameters (height of release, quantity of free barium, etc. ).    Those equations 

would then be solved to determine such characteristics as the time and location 

at which striations would form, their size, brightness, and distribution in space. 

Apparently such equations are presently beyond our grasp.    In fact, the SECEDE 

experiments suggest that the distribution and size of striations are the result 

of a random physical process.    If that is the case,  completely deterministic 

equations are unattainable. 

J^ It does not matter whether the apparent randomness correctly reflects 

the fundamental nature of the process, is a consequence of an uncontrolled 

(random) systematic parameter such as the local "J-field, or simply reflects 
our lack of theoretical understanding of a deterministic process.   Our best 

current theory is that the size, location, and intensity of striations are the 

results of a stochastic process for a given event. 

What we can mean by "good" descriptions, then, are those from which 

an accurate statistical "prediction" of the striations which might be observed 

in some future event can be made.   Suppose, for instance, that the radiance 

profiles of individual striations have the same waveform, but that amplitude 

and spacing are random.   In that case, a good description would consist of 

(1) a description of that vaveform.  (2) an amplitude description (at least the 

mean amplitude), and (3) spacing statistics. 

3. 2     STATIONARITY AND ERGODICITY 

Stochastic processes are analyzed through the examination of various 

ensemble averages; that is, the same experiment is repeated, in principle, 

an infinite number of times, and the results of each are treated as one statistical 

sample of the random process.    However, for certain restricted classes of 

stochasties it is possible to obtain the desired statistics with considerably 

less than an infinite number of identical experiments, perhaps with as few 
as one. 

11- 
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A classification tree for stochastic processes is shown in Figure 6. 

Processes classified as ergodic have the property that the statistics of a single 

sample are identical to the ensemble statistics.   In reality, we never observe 

a complete sample (since it' s infinitely long) but rather some fraction of the 

complete sample which might be called the sample record.    From one such 

record, we can obtain an estimate of the statistical parameters of the process. 

The accuracy of that estimate is related to the record length.    That accuracy 

can be improved by analyzing a longer record or by combining data from 

shorter records. 

I 
I 
;: 

i 
1 
1 
I 

i 
Stationary Nonttatwnary 

Er«OdtC Nontrgodie Spacial 
clauificationt of 
nonttationarity 

Figure 6.      Classification of Stochastic Processes. 

3. 2. 1    Classification of Stochastic Processes 

Figure 7* shows part of an ensemble of sample records.    If we read the 

value of x at tj for each record and divide by the number of records, we obtain 

the ensemble average, designated n (i.), at t .   In general, M (t.) will take on 

different values as tj is changed.    In the same way, we may define the ensemble 

average autocorrelation function,  RJl« I« +r), which will generally be a 

function of both t. and f.   The equations are 

«Many illustrations use "t" to denote the independent variable and x as the 
stochastic.   The origin of most of this work is in communication theory where 
t is time.   The reader is expected to make the appropriate mental substitutions, 
such as t-*x and x-»N(x). 

-12- 



I 
I 
I 
I 
1 
I 
: 

[ 
: 

:: 

**(t) 

h*r 

nfO 

^AA^V^V 
WWf -»•t 

*l(l> 

Figure 7.      Ensemble of sample functions forming random process. 
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If these averages do. In fact, vary with the choice of t-, then the process is 

said to be nonstationary.   But, if it should happen that the ensemble average 

and ensemble autocorrelation are independent of the choice of t , the process 

is said to be stationary. *   In that case, we may write n (t.) = *i   and 

It is also possible to form a mean and autocorrelation for a single sample 
function: 

T 

I Mx(k)   '    T"  V   Xk(t)dt 

I 
_ Rx(r.k)   -      lim    -^ y     xk(t)xk(t+T)dt 

0 

where k denotes the k-th sample of the (stationary) process.    If both M (k) 

and RX{T, k) have the same value for all k' s, then the process is said to be 

ergodic.   In that case, the various sample averages and ensemble averages 
are equal;  i. e.. u (k) - u   and R (T, k) • R (T). 

x "x X" X 

♦Strictly, if M and R are independent of tj, the process is "weakly stationary'1. 
If all higher order moments and joints moments are also independent of t«, the 
process is "strongly stationary" or "strictly stationary". 

14- 
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The concept of stationarity relates to the ensemble averaged,properties 

of a random process.   In practice, however, data in the form of individual 

time-history records for a random phenomenon are frequently referred to as 
i 

stationary or nonstationary.   A slightly different concept of stationarity is 

involved here.   When a single time-history record is referred to as being 

stationary, it is generally meant that the properties computed over     short    ' 

time intervals do not vary "significantly" from one interval to the next.    The 

word "significantly" is used here to me?m that observed variations,are greater 

than would be expected, owing to normal statistical sampling variations.   Hence 

the single sample record is stationary within itself.   This concept of sta- 

tionarity is sometimes called self-stationarity to avoid ^onfusion with thfe 

more classical definition. i 

To clarify the idea of self-stationarity,  consider a single sample record 

xk(t) obtained from the k-th sample function of random1 process xU).   Assume 

that a mean value and an autocorrelation function are obtained by time averaging, 

over a short interval T with a starting time of tt as follows. 

t1+T 

^(tl' k) *  /   Vt)dt 

jytj.tj +T.k) 

tj+T 

k f *\ (Ox, (t+T)dt 

For the general case where the sample properties vary significantly as the 

starting time tj varies, the individual sample record is said tobe self- 

nonstationary.    For the special case where the sample properties do pot   i 

vary significantly as the starting time tj varies, the sample record is said to 

be weakly self-stationary.   If this requirement is met for ail higher order 

moments and joint moments, the sample record is said to be strongly self- 

stationary. 

-15- 
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An important point here id as follows:   A sample record obtained from 

an ergodic. random process will be self - stationary.   Furthermore,  sample 

records from most physically interesting nonstationary random processes 
i i i • ! 

will be self-nonstationary.   Hence, if an ergodic assumption is justified 

(as it is for most actual stationary physical phenomena), verification of 

self - stationarity for a single sample record will effectively justify an assump- 

tion of stationarity and ergodicity for the random process from which the 

sample record is obtained. 
1 ! I 

Ergodic random processes are clearly an important class of random 

processes since all properties of ergodic random processes can be deter- 

mined by performing time averages over a single sample function.   Fortunately, 

in actual practice, random data representing stationary physical phenomena 

are generally ergodic.   It is for this reason that the properties of stationary 

random phenomena can be measured properly, in many cases, from a single 

observed tifne-hi story record. 

3i. 2. 2    Nonstatiqnary Stochastics 

Nonstationary random processes include all random processes which 

do not meet the requirements for stationarity.    Unless further restrictions 
■ i 

are imposed, the properties of nonstationary random processes are generally 

time-varying functions which can be determined only by performing instantaneous 
I . : 

I ! 

averages over the ensemble of sample functions forming the process.    In 

practice, it is often not feasible to obtain a sufficient number of sample records 

to permit the accurate measurement of properties by ensemble averaging. 

This fact has tended to impede the development of practical techniques for 
i        '. 

measuring and analyzing nonstationary random data. 

In fact, a totally adequate methodology does not as yet exist for the 

analysis of all types of nonstationary data, partly because of the fact that a 

nonstationary conclusion is generally a negative statement specifying the 

lack of stationary properties, rather than defining the precise nature of the 

-16- 
i i ■ 

i 



I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
f 

nonstationarity. On the other hand, when a process is deemed stationary, 

certain positive results are known which apply to all stationary data. For 

nonstationary data, special techniques must be developed which apply only 
to limited classes of these data. 

Illustrated in Figure 8 are the three basic and most important categories 

of nonstationary data:  (a) time-varying mean value,  (b) time-varying mean 

square value, and (c) a combination of (a) and (b).   As we shall see. the 

radiance profile of the striated ion cloud is probably nonstationary (category c); 

however, it may be possible to treat the striations, per se. as ergodic. 

Tim» 

—*  »Titnt 

Timt 

Figure 8.   Examples of nonstationary data. 

-17- 
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• 3.3        SECEDE-TYPE STRIATION DATA 

^ Figures 1 through 4 contain typical radiance profiles for striated 

barium ion clouds.   To the extent that these scans are, in fact, typical, it 

| is evident that the ion cloud radiance profile data has a distance varying mean 

and mean square.   (Compare with Figure 8.)   The data is nonstationary (thus, 

^ nonergodic).   We are not, however, particularly interested in the Sro3s 

behavior of the ion cloud, nor do we care about gradation in the general sky 

J[ brightness.   If we could subtract these two effects* from the radiance profile, 

we might be left with a data record which is ergodic. 

To the best of our knowledge, such a subtraction has not been attempted 

for SECEDE-type striation data;   thus, we do not know exactly how to proceed. 

We are inclined to try simple procedures first, and the remainder of this 

|- section will be concerned with one fairly simple approach which also has 

■i considerable flexibility;   that is, to subtract a running average from the data 

| record.   The average should be centered on the data point being operated upon. 

■ This process is essentially high-pass filtering, with a "turn-on" frequency 

| determined by the averaging interval.   The data of Figures 1 through 4 suggests 

that the background radiance level (basically interpreted to include gross ion- 

cloud radiance, sky brightness, and striation DC) occurs at much lower fre- 

quencies than the striations, so this simple subtraction process may provide 
satisfactory results. 

; 

• 

3JC 

It will also be necessary to suppress the DC term required for physically 
meaningful radiance.   That suppression is desirable for other reasons dis- 
cussed later.   If desired, the DC power can be added directly to the spatial 
frequency power spectra. 

18- 
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A Cautionary Note 

A literal high-pas' filter applied to the Fourier transform 

will not give equivalent results to those obtained using the 

subtraction process.    We are working with sampled, 

digitized records ot finite length.   In consequence, the 

numerical Fourier transform at each frequency contains 

a contribution from all other frequencies.   The numerical 

transform is the convolution of ideal transform and a sine- 

function* corresponding to the length of the data set.   The 

sine-function propagated by DC will affect all higher fre- 

quencies and may, in fact,  dominate the power spectrum 

(as is discussed further herein). 

The effect of the convolution occurs simultaneously with 

the transform.    It cannot be unfolded.   If high frequency 

data has been modified substantially, a high-pass filter 

cannot retrieve the ideal data. 

Basically, what we are doing is writing the total signal N(x) as the sum 

N(x)   «      B(x) + S(x) 

of a nonstationary background, B(x), which is of little or no interest, and a 

dc suppressed striation term,  S(x), which we hope to treat as ergodic.    For 

a single record, the Fourier transform is 

NM    =      S(w) + S(«) 

so that the ideal power spectrum is 

P(N, u)     =       N( w) N(w)   »    P(B, u) + P(S. w) + 

[cross terms in B and S] 

* 
sine (x) = (sinx)/x 

19- 



I 
I 
1 
: 

:; 

L 

:: 

: 

If B and S are disjoint in frequency space, the cross terms are identically 

zero.   The ideal power spectrum of a single record would simply be the sum of 

the power spectra of B and S.   Since, however, the actual spectrum contains a 

convolved sine-function, it is not possible to simply separate P(S, w) out. 

On the other hand, a prescription can be given which hopefully separates 

B from S directly and which essentially guarantees that the resulting functions 

are frequency disjoint.   Since P(B, w) and P(S, w) can be formed from the 

separated functions, it appears that no information on the total power spectrum 

of the record is lost.   However, one is able to treat the interesting part, 

P(S, w),  separately. 

3. 3. 1    Ergodicity of S(x) 

Suppose, then, that the separation is effected.   One must ask whether 

anything has been accomplished; that is, does the k-th record power spectrum 
p

k(S, w) tell us anything about the power spectrum of striations as a general 

class.   Once again, the answer isn't clear.   It depends on whether some 

apparently reasonable assumptions are correct. 

If we assume that the radiance profiles of individual striations have the 

same form and that their location and amplitude are random, then it can be 

shown that the striation record waveform, S, is ergodic.   And, in fact, if v 

is the striation ensemble average waveform, then 

P(S, w) oc P(v, w) 

We must be careful in interpreting this expression since we are dealing with 

statistical quantities.   Once the constant of proportionally,  k, has been 

determined,  P(S) and kP(v) are statistically indistinguishable.   But that does 

not mean that they are numerically identical at each wavelength, w.   As the 

length of the record s(x) increases, the statistics improve, which is to say the 

variance [(P(S) - kP(v))2] decreases.   Only in the limit of an infinite record 

length is the variance of power estimates at each wavelength reduced to zero; 

thus, only in that limit is a numerical identity obtained.    For records of 
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finite length, the variance of the estimate at each wavelength can be determined. 

Thus, the power spectrum of an ergodic record of finite length gives ap estimate, 

with known variance, of the ensemble average power spectrum. 

To illustrate how the constraint of proportionality is obtained,  consider, a 

restricted case of the above assumption in which the individual striation Radiance 

profile amplitudes are fixed and identical.   The stHations,  however, occur 
i 

(replicate) with random spacing.    Let the waveform tobe replicated be1 A(t). 

(In sketching the waveforms^ A(t) will be taken'to be a square pulse.   The 

formalism is general, however. )  The Fourier transform o^ the replication 

element is A(w) (Figure 9) i i , 

AM   .= 

10 

7S?/ A(t).e-iwtdt 

and is in general a complex quantity.   The power spectrum of the waveform is 

PA (w):   =      A(2)  A(w) 
i . i 

which is a real function of w.    The phase relations between the various wave- 
lengths has been lost. 

A(t) A(w) 

n 
Figure 9.      A single feature and its trarisform1. 

i 
i 

* 

Now, let a replication of A(t) occur at a later time.   The1 waveform is 

B(t).   The total waveform is A(t) + B(t), as illustrated in Figure 10.   Since 
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B(t) AUHBU) a n  ,n , 
Figure 10.    The additiori of a second feature. 

Fourier transformation is a linear process« the transform of the sum is 

(A + B)    - 75^ Y(A(t) + pa»^"1"*  dt   «   A(w) + B(w) 

■ i 

Because A(t) ai^d B(t) do not occur at the same time. A(w) and BM are not 

identical.   However,  since A and B are identical except for the time of 

occurrence, one expects A and F to be related, and in fact they are.   Note 

i    that'   ■ ' ' ' 

B(t)    »      Aft-tJ   ' 
, .        1 , i 

i 

where tj is the time between identical portions of the waveforms (e. g., the 

leading edge of a pulse).   Now: 

i      i 

iw  •   TR / B«) e"1- d. • ^ / A(t.V S* 

and letting t'    •   t - t. 80 that dt   ■   dt^ 

or 

'5(u, ■ Tn/*«1 ) e-1«1' ,-"l „f 

1       -icoti 
72? e       ' JkW )e 

-iwt' 
df 

B(a)    -      A(w) e x^l 
i i 

i i 

i 
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Thus, the transforms of B and A are identical apart from phase factors. 

Clearly then, if the total waveform. Z(t), consists of replication of A(t) at 
tires characterized by !„ tg, ... t     (see Figure 11). 

Z(U 

njin nn 
'• 

— »r 

n if- a 
-ft 

Figure 11.    The total record of randomly replicated features. 

'the Iransform is 

ZM    ■      A(w) [1 + e"i4J + e'M2 ♦ ... + e"lwtn ] 

ami th«' power spectrum of Z(t) 

Z*Z   -     A*A C 1 + e-lta*l ♦ e-lwt2 ♦... 4 e'^n ] 

[1 * eiwtl+eiwt2 + ... ♦eiwtn] 

■" it •■"')( s -i 
vhorr we have defined to - 0 so that e*lwto - 1.   Since the sums are over 

different indices 

Z*Z   ■      A*A 

[N N 

j-o   i.o 
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We can consider that the sum la over a two-dimenaional array of the 

(tj. tj). where, for instance, "l" is a column index and "j" a row index. 

Break the double sum into three pieces, one piece consisting of all terms 

on the diagonal, the second all terms above the diagonal, and the third all 
terms below the diagonal 

Z*Z 

'•l'J-0 i>j 
J-O 

i<j J 
j-0 

Each element of the first ^ is identically 1. and the second and third 
terms are complex conjugates.   Thus 

2»Z • A»A 
N 

N+ 2Re 
-iu(trV 

2*Z • A»A 

J'O 

N 

N* 2   ^ cosw(t -y 

J>i 
i-0 

1 -14- 
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To this point, the derivation it rigorous.   If the Urne   et which the 

replicetlone occur it random« the argument of the cotine it alto random. 

If N it large enough, one expectt to tee at many negative termt at potitive 

termt in the remaining tummation.   Thut. if N it large enough, the remaining 
*• tummation goet to zero and 

Q 

i. 
i. 
1. 
i 

Nlarge 

In werde, if enough randomly tpaced replicationa are included, the 

power spectrum of the total waveform it timply N-tlmee the tpectrum of a 
^ replication unit. 

To complete the analytit. consider that the real waveform consists of 
randomly timed replications of A(t) plus tome other signal C(t): 

N 

2(t)-C(t)* y^A(t • U 
i-0 

Then 

!. 

:. 

!. 

1. 
11 

N N 

Z^Z- C«C*NA»A*C*A   2^ • ♦CA«2J«       J 

Z (u) - C(w) ♦ A(u) (£ ^) 
Vl»0 / 

and 

i-0 j-o 

The last two termt are complex conjugates, and their total contribution is 

just twice the real part of either term.   In this case, it it not pottible to 

write the real part in a simple form;  however, it it pottible to write a 
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■uperflclally simpler form aa a baals to argue that the term is negligible. 
Let 

•s*        »w        •%.* '* UU) t 

D-C*A-d + i6andO-2e      l"« + l<». 
i 

then the last two terma contribute 

2Re D G -   2(dg+6a) 

aince 

g ■ ^coa wt. • 0 

and 

a ■ ^einwt  » 0 

By the aame argument, the laat terma are negligible to flrat order and 

:. 

Z*2 ■ C*C^ NA*A 

i. 
In worda, the power epectrum of a waveform containing, among other 

things. N randomly ipaced replicationa of a particular aignal (A(t» will 
contain (to flrat order) N -timea the power apectrum of A. 

L The more general aasumption which we wish to make about atriaciona 

ia that the amplitude ia also a random variable.   (Thia ie aomettmee termed 

L "Impulee Noiae".)  In that caae. S(x) ia the aum of many similarly ahaped 
tranaient pulses (see Figure 12). 

I 
i 
I 
I 
l 

»*n- t««a«-u 

-<v 

. 1 
«.•«-(,1 A./r:  

Figure 12. Sample fünctfona x (t) for five examples of random processes. 
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whose shape ie given by v v (x), with 

/• 
v(x) e"iwx dt- V (w) 

while the pulse amplitude ak is a random variable with finite variance. 
| and the x's are random locations determined by the state changes of a 

Poisson process with mean count rate o.   The process is stationary 
and ergodic if started at x - - «;   one has 

D |i-E|S(x)|-   aE {ak)   f v(x)dt 

B 
IT Rg(x)-M*oE   {ak)   / v(x) v(x*l)dt 

B 
P(8.«) - M6 (W) ♦ ^_ E   (^ ) I V(w)I 2 

where  E (u ) denotes the expected value of u. 
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APPENDIX A 

RADIOMETRIC INTERPRETATION 
OF 

PHOTOGRAPHIC RECORDS 

A. 1    INTRODUCTION 

These notes present a brief outline of the mathematical formalism 

and the concepts used by EG&G to obtain source radiance and power Infor- 

mation from photographic records.   The notes were prepared during the 

1971 SECEDE Summer Study. 

A. 2    BASIC CONCEPT 

Radiometrie interpretation of photographic records is based on the 

assumption that the measured density of an element of film is a monotonic 

function of the effective exposure, as defined by Eqs. (1) and (2), provided 

that other variables which affect density are held constant (e. g., exposure 

duration, processing, etc.).   Therefore, if a calibration curve (a D-log B 

curve) is generated by measuring the densities, D., of known exposures. 

E.( on film of the same emulsion as (and processed with) the data film, 

the effective exposure on the data film, E.fx.y), associated with a 

measured density, D  (x, y), may be obtained from this curve. 

A. 3    DENSITY DETERMINATION 

Density measurements may be made with any of the sever,    com- 

mercially available microdensitometers,   with the understanding that 

calibration densities, D^ and image densities. D  (x.y), be measured with 

the same microdensitometer, using the same optics, and as close together 

in time as is feasible. This will eliminate all problems created by specular 
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versus diffuse measurements, and reduces the measurement to a comparison 

one in which the calibration and image densities are used only as transfer 
measurements of exposure. 

i t 

i 

A. 4    CAUBRATION PROCEDURE 

i • i 

A. 4.1    Step Wedge Exposure 

As a minimum, each data record should receive four step-wedge 

exposures In a calibrated sensltometer (two pre-shot and two post-shot),with 

each pair placed head-to-head.   Sensltometer exposure times shouJd be chosen 

to most nearly correspond to data film exposure times.   The step wedge 

exposures should be processed at the same time as. and adjacent to. the 
associated film record. 
A. 4.2    D-Log E Curve ,        ., 

The effective exposure. E^ for the ith step of the step wedge is 
taken to be i 

i 

a 
£ Er /  "^ Ti(>) s(x) ^^  so* • ' (i) 

o cm
2 

where 

u(X)    spectral energy density on the sensltometer 
platen (ergs/cm2-A). 

T^X) s dimensionless diffuse transmittance of the 
r" step, and i i 

S(X) ■ dimensionless film sensitivity. 

EG&G generally scans each of the four step wedges three times along 

parallel paths to produce twelve sets of density data (thirty-six for color 

film).   Trial D-log E curves are constructed for each of the twelve scans. 

and these are reviewed in order to make adjustments and to eliminate 

i 
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A. 5.1    Radiance 
1 i 

,      For an imaging optical system focused at infinity, the effective 
exposure at (x, y) on the film is given by* 

107 r t 

i    '     '    ' 
inconsistent data.   A final b-log ^ curve is generated as an arithmetic 
rpean of the acceptable trail curves. 

j. i A. 5    RADIANCE,  POWER, AND ENERGY EQUATIONS 

o 
Ol.te.y)-"'  wXtm   '    f    N(X)S(X)T(X)dx    ergs 

•      ,    ■   ,     r^T^  <! em* 

where ' 

0, N(X) ■ spectral radiance of point (X, Y) In the object 
i plane corresponding to Doint (x, y) in the image 

plane (watts/cm2«-ster-A). 
i i 

OTU) = the total spectral transmittance along the optical 
1 path, i • ' 

0(f/)   ■ the aperture of the optical system (focal length 
divided by the diameter of the lens aperture), and 

t™ = the exposure time at point (x,y) (seconds). 
,        i c*|# 

To unfold Eqn. (2) for N(X), assume that the relative shape, N(X). 

i    of N(X) is known but not its magnitude, N0.   Then, 

(2) 

N(X)I   -N   N(X), (3) 

noa-i^JÄli —mi Ei(x.y). 

'0 

and Eqn.  (2) yields 

'7        2 £ 
IniAß   ■ L—     —. 

,                                                  '  eXP        / N<X) T(X) S(X) dX 

I 
I 

(4) 

0' 

Eqn. (2) assumes that the source area considered is on or near the 
optical axis. 

i 
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The total radiance in the wavelength range (a,b) is then 

b 

* Nab(X,Y)s    J    N(X)dX 

1 A | =   10 7 4(f/).2       9L
J

   N(X)dX E^x.y) watts (5) 

' ^xp      jr N(X) T(» S(X) dX cm2-ster 

Note that T(X) may be written as 

T(X) = TA(X)  TW(X)  TF(X)  Tp(X)  TL(X). (6) 

where 

T.CX) ■ spectral transmittance of the atmosphere. 

T   (X)      spectral window transmittance, 

T_(X) = spectral filter transmittance. 

T   (X) = spectral prism transmittance. and 

T   (X) ■ spectral lens transmittance. 

For black and white film, the limits of integration (a. b) are usually 3800 - 

6800 A.   For color film, each layer is treated separately with the limits 
J*. • • 

usually taken as 3800 - 4800 A. 4300 - 5800 A, and 5800 - 6800 A. 

A. 5. 2    Power 

I Assume that the radiating source is located on the optical axis and 

that its dimensions are small compared to the distance between the source 

I and the camera.   Then, if the source is (1) an optically thin volume rather 

or (2) a spherical Lambert surface radiator, the total radiated power in the 

I wavelength interval (a. b) is given by 

X        Y 

u (X.Y) dX   dY C.) 
ab 
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| where the integration is performed over a designated area of the film 

(perhaps the entire frame), and 

J^ ROA ■ range along the optical axis and 

FL    ■ lens focal length. 

Once N     (X, Y) has been evaluated from Eqn. (5), P . may be calculated 

from Eqn. (8).   When the above assumptions do not hold, special calculation 

procedures must be followed. 

A. 5.3     Total Energy 

J, Through a consideration of successive frames of a record, the time 

dependence of P     may be determined.   Thus, the total radiated energy in 

the range (a. b) and in the time interval (t^-tj may be written as 
t '   * 

0 Uab       J       Pab (t) dt iouleB- (9) 

h 
Equations (5), (8), and (9) are the basic equations employed in obtaining 

radiometric information from photographic records. 
'l 

A. 6     FACTORS IN THE EQUATIONS 

A. 6.1    Exposure Time 

The exposure time (t      ) should be measured directly or computed 

from measurements of film velocity and camera characteristics. 

A. 6. 2    Lens Spectral Transmittance/Optical Aperture 

EG&G obtains   the lens spectral transmittance (T   (X)) from 

^ measurements of the actual lens at the nominal setting.   The curve thus 

generated is not the true spectral transmittance of the lens, but includes 

^ any differences between the nominal f/ and the effective f/.   The curve 

I 
f 



I 
• generated is 

..- 

•m'      *•<*> 

1 
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2 
(f/)   nominal 

it/)2 effective 

J where T (X) is the true spectral transmittance of the lens.   The nominal f/ 

is used in the radiance equation. 

1 
A. 6.3    Atmospheric Spectral Transmittance 

j The atmospheric spectral transmittance (T.U)) can be a unique 

quantity for each photograph.   Ideally, measurements of TA(X) should be 

made for ^ach exposure, or, since this is almost an impossible task, 

a mathematical model of atmospheric transmission can be constructed so 

that TA(X) can be calculated as both a spectrally and spatially varying 

quantity. 

•• A. 6. 4    Spe   ^al Transmittances 

The several spectral trans mittanc es used in Eqns. (5) and (6) 

should all be measured values. 
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